博士論文公聴会の公示（物理学専攻）

学位申請者：佐藤 和樹

論文題目 ：Investigation of the Multiple－q Ordered States of Frustrated Magnets under Pulsed High Magnetic Fields
（パルス強磁場を用いたフラストレート磁性体における多重 Q 秩序状態の研究）

日時：2020年2月5日 10：30－12：00
場所：理学研究科H棟 7 階物理大セミナー室（H701 号室）
主査：萩原政幸
副査：松野丈夫，川村光，中澤康浩，鳴海康雄

論文要旨：

A peculiar spin texture like a＇skyrmion－latiice（SL）＇has been studied extensively from the viewpoint of realization of topological magnetic objects．It was theoretically suggested that the triple－q phase corresponding to SL appears in the classical two－dimensional triangular－lattice antiferromagnet．This multiple－q ordered state including SL has been considered as a nontrivial ordered state and thus is worth revealing its characteristics experimentally as well as theoretically． Recently，a triple－q phase similar to SL was observed in the neutron scattering experiments of the cubic diamond－lattice magnet $\mathrm{MnSc}_{2} \mathrm{~S}_{4}$ ．In a compound without inversion symmetry，Dzyaloshinskii－Moriya interaction causes an appearance of SL and there are several experimental observations．On the other hand， $\mathrm{MnSc}_{2} \mathrm{~S}_{4}$ has attracted a substantial interest as a first example of the triple－q ordered state due to the magnetic frustration．

In this study，we developed a high precise magnetization measurement apparatus in conjunction with a ${ }^{3} \mathrm{He}$ cryostat．Then，we performed high－field magnetization and specific heat measurements of $\mathrm{MnSc}_{2} \mathrm{~S}_{4}$ to research possible multiple－q ordered states in a whole $\boldsymbol{H}-\mathbf{T}$ space up to the field－induced ferromagnetic state． From the experimental results，we constructed the $\mathbf{H}-\mathbf{T}$ phase diagram，in which we confirmed the several phases reported in the neutron scattering research． Furthermore，we found the existence of novel two phases surrounding the triple－q phase．We made an original classification whether multi－domain structure of single－q state or single－domain structure of triple－q by considering a hysteresis loop in the magnetization process due to the magnetic domain effect．

