博士論文公聴会の公示(物理学専攻)

学位申請者 :田原 大夢

論文題目 : Study of the Magnetic-Field and Pressure Effects on the Metal-to-Insulator Transition System BaVS₃ (金属─絶縁体転移を示す系 BaVS₃の磁場─圧力効果の研究)

日時:2020年2月5日 14:40 - 16:10

場所:理学研究科H棟7階物理大セミナー室(H701号室)

主査:萩原政幸

副查 : 花咲徳亮、鳴海康雄、宮坂茂樹、三宅和正

論文要旨:

Vanadium sulfide BaVS₃ has a hexagonal perovskite-type structure in which face-sharing VS₆ octahedra compose a spin chain along the *c*-direction. The metal-to-insulator (MI) transition takes place at $T_{\rm MI} \sim 70$ K accompanied by the formation of charge density waves. This means that one-dimensional Peierls instability is important in determining physical properties of BaVS₃ in contrast to almost isotropic macroscopic properties. Application of pressure or magnetic field is effective to tune the electronic state. A metallic conductivity is recovered above the critical pressure $p_{\rm cr}$ of 2.0 GPa. Under high magnetic field, a metamagnetic transition is observed around 50 T. In spite of enthusiastic experimental works, the magnetic properties of BaVS₃ are still unclear even in a high temperature paramagnetic state.

In this study, we shed light on a combination of both pressure and magnetic field as a key to understanding of controversial physical properties of BaVS₃, Magnetic susceptibility and magnetization measurements of a powdered sample of BaVS₃ have been done under high pressure up to 1.15 GPa and pulsed high magnetic fields up to 50 T. We found that 67% of paramagnetic moment above $T_{\rm N}$ was involved in a metamagnetic transition which was observed below a critical pressure $p_{\rm M}$ of 0.90 GPa. In addition, we found an anomaly at $T_{\rm a} \sim 60$ K, which is different from the original MI transition. This anomaly has also the same critical pressure $p_{\rm M}$. Accordingly, we have revealed that two spin gaps open below $T_{\rm MI}$. By considering metallic magnetism, we have proposed two models, "c d hybridization" and "multiple Peierls transition", to interpret the magnetism in BaVS₃.